// 版权所有 (c) ling 保留所有权利。 // 除非另行说明,否则仅允许在DataStruct中使用此文件中的代码。 // // 由 ling 创建于 24-6-30. // #ifndef REDBLACKTREE_REDBLACKTREE_H_03 #define REDBLACKTREE_REDBLACKTREE_H_03 #include #include namespace ling { enum Relation { EQUAL, BIG, SMALL, }; enum Color { RED, BLACK, }; /** * 红黑树 * @tparam T */ template class RedBlackTree { public: struct Node { T value; Color color; Node *left; Node *right; //父节点 Node *parent; Node(T value, Color c, Node *p, Node *l, Node *r) : value(value), color(c), parent(p), left(l), right(r) { } }; private: /// 根节点 Node *rootNode = nullptr; void destroy(Node *&node); /// 插入函数 void insert(Node *&root, Node *node); /** * 红黑树插入修正函数 * * 在向红黑树中插入节点之后(失去平衡),再调用该函数; * 目的是将它重新塑造成一颗红黑树。 * * @param root 红黑树的根 * @param node 插入的结点 */ void insertFixUp(Node *&root, Node *node); /** * 红黑树删除修正函数 * * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数; * 目的是将它重新塑造成一颗红黑树。 * * @param root 红黑树的根 * @param node 待修正的节点 */ void removeFixUp(Node *&root, Node *node, Node *parent); /** * 对红黑树的节点(x)进行左旋转 * * 左旋示意图(对节点x进行左旋): * px px * / / * x y * / \ --(左旋)--> / \ # * lx y x ry * / \ / \ * ly ry lx ly * * */ void leftRotate(Node *&root, Node *x); /** * 对红黑树的节点(y)进行右旋转 * * 右旋示意图(对节点y进行左旋): * py py * / / * y x * / \ --(右旋)--> / \ # * x ry lx y * / \ / \ # * lx rx rx ry * */ void rightRotate(Node *&root, Node *y); /// 查找元素 Node *iterativeSearch(Node *x, T key) const; Node *findSearch(Node *x, T key) const; /// 删除元素 void remove(Node *&root, Node *node); protected: virtual Relation equal(const T &val1, const T &val2) const = 0; public: explicit RedBlackTree() = default; RedBlackTree(const RedBlackTree &other) = delete; RedBlackTree(RedBlackTree &&other) noexcept { this->rootNode = other.rootNode; other.rootNode = nullptr; } RedBlackTree &operator=(RedBlackTree &&other) noexcept { if (this == &other) { return *this; } this->rootNode = other.rootNode; other.rootNode = nullptr; return *this; } RedBlackTree &operator=(const RedBlackTree &other) = delete; virtual ~RedBlackTree() { destroy(); } /// 销毁红黑树 void destroy(); /// 插入元素 void insert(T key); /// 删除节点 void remove(T key); /// 查找元素 /// 区别于findSearch,此方法会在没有匹配时返回接近的节点 const Node *iterativeSearch(T key) const; const Node *findSearch(T key) const; /// 根节点 const Node *getRoot() const { return rootNode; } // 查找最小结点:返回tree为根结点的红黑树的最小结点。 const Node *minimum() const; // 查找最大结点:返回tree为根结点的红黑树的最大结点。 const Node *maximum() const; [[nodiscard]] size_t getSize() const; [[nodiscard]] int getTreeHeight() const; #define rb_parent(r) ((r)->parent) #define rb_color(r) ((r)->color) #define rb_is_red(r) ((r)->color==RED) #define rb_is_black(r) ((r)->color==BLACK) #define rb_set_black(r) do { (r)->color = BLACK; } while (0) #define rb_set_red(r) do { (r)->color = RED; } while (0) #define rb_set_parent(r, p) do { (r)->parent = (p); } while (0) #define rb_set_color(r, c) do { (r)->color = (c); } while (0) }; template int RedBlackTree::getTreeHeight() const { const Node *current = getRoot(); if (current == nullptr) return 0; std::stack> stack; stack.push({current, 1}); int maxHeight = 0; while (!stack.empty()) { auto [node, height] = stack.top(); stack.pop(); if (node != nullptr) { maxHeight = std::max(maxHeight, height); if (node->right != nullptr) { stack.push({node->right, height + 1}); } if (node->left != nullptr) { stack.push({node->left, height + 1}); } } } return maxHeight; } template size_t RedBlackTree::getSize() const { const Node *current = getRoot(); std::stack stack; size_t size = 0; while (current != nullptr || !stack.empty()) { //走到最坐子树 while (current != nullptr) { stack.push(current); current = current->left; } //处理当前节点 current = stack.top(); stack.pop(); size++; //处理右子树 current = current->right; } return size; } template typename RedBlackTree::Node const *RedBlackTree::maximum() const { Node *tree = rootNode; if (tree == nullptr) return nullptr; while (tree->right != nullptr) tree = tree->right; return tree; } template typename RedBlackTree::Node const *RedBlackTree::minimum() const { Node *tree = rootNode; if (tree == nullptr) return nullptr; while (tree->left != nullptr) tree = tree->left; return tree; } template void RedBlackTree::removeFixUp(RedBlackTree::Node *&root, RedBlackTree::Node *node, RedBlackTree::Node *parent) { Node *other; while ((!node || rb_is_black(node)) && node != root) { if (parent->left == node) { other = parent->right; if (rb_is_red(other)) { // Case 1: x的兄弟w是红色的 rb_set_black(other); rb_set_red(parent); leftRotate(root, parent); other = parent->right; } if ((!other->left || rb_is_black(other->left)) && (!other->right || rb_is_black(other->right))) { // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的 rb_set_red(other); node = parent; parent = rb_parent(node); } else { if (!other->right || rb_is_black(other->right)) { // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。 rb_set_black(other->left); rb_set_red(other); rightRotate(root, other); other = parent->right; } // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。 rb_set_color(other, rb_color(parent)); rb_set_black(parent); rb_set_black(other->right); leftRotate(root, parent); node = root; break; } } else { other = parent->left; if (rb_is_red(other)) { // Case 1: x的兄弟w是红色的 rb_set_black(other); rb_set_red(parent); rightRotate(root, parent); other = parent->left; } if ((!other->left || rb_is_black(other->left)) && (!other->right || rb_is_black(other->right))) { // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的 rb_set_red(other); node = parent; parent = rb_parent(node); } else { if (!other->left || rb_is_black(other->left)) { // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。 rb_set_black(other->right); rb_set_red(other); leftRotate(root, other); other = parent->left; } // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。 rb_set_color(other, rb_color(parent)); rb_set_black(parent); rb_set_black(other->left); rightRotate(root, parent); node = root; break; } } } if (node) rb_set_black(node); } template void RedBlackTree::remove(RedBlackTree::Node *&root, RedBlackTree::Node *node) { Node *child, *parent; Color color; // 被删除节点的"左右孩子都不为空"的情况。 if ((node->left != nullptr) && (node->right != nullptr)) { // 被删节点的后继节点。(称为"取代节点") // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。 Node *replace = node; // 获取后继节点 replace = replace->right; while (replace->left != nullptr) replace = replace->left; // "node节点"不是根节点(只有根节点不存在父节点) if (rb_parent(node)) { if (rb_parent(node)->left == node) rb_parent(node)->left = replace; else rb_parent(node)->right = replace; } else // "node节点"是根节点,更新根节点。 root = replace; // child是"取代节点"的右孩子,也是需要"调整的节点"。 // "取代节点"肯定不存在左孩子!因为它是一个后继节点。 child = replace->right; parent = rb_parent(replace); // 保存"取代节点"的颜色 color = rb_color(replace); // "被删除节点"是"它的后继节点的父节点" if (parent == node) { parent = replace; } else { // child不为空 if (child) rb_set_parent(child, parent); parent->left = child; replace->right = node->right; rb_set_parent(node->right, replace); } replace->parent = node->parent; replace->color = node->color; replace->left = node->left; node->left->parent = replace; if (color == BLACK) removeFixUp(root, child, parent); delete node; return; } if (node->left != nullptr) child = node->left; else child = node->right; parent = node->parent; // 保存"取代节点"的颜色 color = node->color; if (child) child->parent = parent; // "node节点"不是根节点 if (parent) { if (parent->left == node) parent->left = child; else parent->right = child; } else root = child; if (color == BLACK) removeFixUp(root, child, parent); delete node; } template typename RedBlackTree::Node *RedBlackTree::iterativeSearch(RedBlackTree::Node *x, T key) const { Relation temp; Node *closest = nullptr; while (x != nullptr) { temp = equal(x->value, key); if (temp == EQUAL) return x; if (temp == SMALL) { closest = x; x = x->right; } else { x = x->left; } } return closest; } template typename RedBlackTree::Node *RedBlackTree::findSearch(RedBlackTree::Node *x, T key) const { while ((x != nullptr) && equal(x->value, key) != EQUAL) { if (equal(key, x->value) == SMALL) { x = x->left; } else { x = x->right; } } return x; } template typename RedBlackTree::Node const *RedBlackTree::findSearch(T key) const { return findSearch(rootNode, key); } template typename RedBlackTree::Node const *RedBlackTree::iterativeSearch(T key) const { return iterativeSearch(rootNode, key); } template void RedBlackTree::remove(T key) { Node *node; // 查找key对应的节点(node),找到的话就删除该节点 if ((node = iterativeSearch(rootNode, key)) != nullptr) remove(rootNode, node); } template void RedBlackTree::rightRotate(RedBlackTree::Node *&root, RedBlackTree::Node *y) { // 设置x是当前节点的左孩子。 Node *x = y->left; // 将 “x的右孩子” 设为 “y的左孩子”; // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲” y->left = x->right; if (x->right != nullptr) x->right->parent = y; // 将 “y的父亲” 设为 “x的父亲” x->parent = y->parent; if (y->parent == nullptr) { root = x; // 如果 “y的父亲” 是空节点,则将x设为根节点 } else { if (y == y->parent->right) y->parent->right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子” else y->parent->left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子” } // 将 “y” 设为 “x的右孩子” x->right = y; // 将 “y的父节点” 设为 “x” y->parent = x; } template void RedBlackTree::leftRotate(RedBlackTree::Node *&root, RedBlackTree::Node *x) { // 设置x的右孩子为y Node *y = x->right; // 将 “y的左孩子” 设为 “x的右孩子”; // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲” x->right = y->left; if (y->left != nullptr) y->left->parent = x; // 将 “x的父亲” 设为 “y的父亲” y->parent = x->parent; if (x->parent == nullptr) { root = y; // 如果 “x的父亲” 是空节点,则将y设为根节点 } else { if (x->parent->left == x) x->parent->left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子” else x->parent->right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子” } // 将 “x” 设为 “y的左孩子” y->left = x; // 将 “x的父节点” 设为 “y” x->parent = y; } template void RedBlackTree::insertFixUp(RedBlackTree::Node *&root, RedBlackTree::Node *node) { Node *parent; Node *gparent; // 若父节点存在,并且父节点的颜色是红色 while ((parent = rb_parent(node)) && rb_is_red(parent)) { gparent = rb_parent(parent); //若父节点是祖父节点的左孩子 //若“父节点”是“祖父节点的左孩子” if (parent == gparent->left) { // Case 1条件:叔叔节点是红色 { Node *uncle = gparent->right; if (uncle && rb_is_red(uncle)) { rb_set_black(uncle); rb_set_black(parent); rb_set_red(gparent); node = gparent; continue; } } // Case 2条件:叔叔是黑色,且当前节点是右孩子 if (parent->right == node) { Node *tmp; leftRotate(root, parent); tmp = parent; parent = node; node = tmp; } // Case 3条件:叔叔是黑色,且当前节点是左孩子。 rb_set_black(parent); rb_set_red(gparent); rightRotate(root, gparent); } else//若“z的父节点”是“z的祖父节点的右孩子” { // Case 1条件:叔叔节点是红色 { Node *uncle = gparent->left; if (uncle && rb_is_red(uncle)) { rb_set_black(uncle); rb_set_black(parent); rb_set_red(gparent); node = gparent; continue; } } // Case 2条件:叔叔是黑色,且当前节点是左孩子 if (parent->left == node) { Node *tmp; rightRotate(root, parent); tmp = parent; parent = node; node = tmp; } // Case 3条件:叔叔是黑色,且当前节点是右孩子。 rb_set_black(parent); rb_set_red(gparent); leftRotate(root, gparent); } } // 将根节点设为黑色 rb_set_black(root); } template void RedBlackTree::insert(RedBlackTree::Node *&root, RedBlackTree::Node *node) { Node *y = nullptr; Node *x = root; // 1. 将红黑树当作一颗二叉搜索树,将节点插入二叉搜索树中 while (x != nullptr) { y = x; if (equal(node->value, x->value) == SMALL) { x = x->left; } else { x = x->right; } } node->parent = y; if (y != nullptr) { if (equal(node->value, y->value) == SMALL) { y->left = node; } else { y->right = node; } } else { root = node; } // 2. 设置节点的颜色为红色 node->color = RED; // 3. 将他重新修正为一颗红黑树 insertFixUp(root, node); } template void RedBlackTree::insert(T key) { Node *node = new Node(key, BLACK, nullptr, nullptr, nullptr); insert(rootNode, node); } template void RedBlackTree::destroy() { destroy(rootNode); } template void RedBlackTree::destroy(RedBlackTree::Node *&node) { if (node == nullptr) return; if (node->left != nullptr) destroy(node->left); if (node->right != nullptr) destroy(node->right); delete node; node = nullptr; } } // ling #endif //REDBLACKTREE_REDBLACKTREE_H_03